2016 Rocky Mountain Regional Programming Contest

Solution Sketches

Credits

- Darko Aleksic
- Howard Cheng
- Zachary Friggstad
- Warren MacEvoy
- Per Austrin
- Sumudu Fernando

A - FizzBuzz (54/54)

- Straightforward - do exactly what you are asked.

I - Stacking Cups (48/50)

- Sorting problem.
- Trickiest part - reading input correctly.

C - Password Hacking (39/48)

- Optimally, try passwords in order of descending probability.
- Once sorted, result is $\sum_{i=1}^{n} i * p_{i}$

G - Flow Shop (21/26)

- As stated - stage j of swather i cannot start before stage j of swather $i-1$ is completed.
- Solution is ans $_{i, j}=p_{i, j}+\max \left(\right.$ ans $_{i, j-1}$, ans $\left._{i-1, j}\right)$
- Easier to implement if we consider $(n+1) X(m+1)$ grid (no boundary checks needed)

F - Bumper-To-Bumper Traffic (18/32)

- Main observation: if $x_{1}<x_{2}$, the only way the first car can catch up is if the second one is not moving.
- Simulate. Implementation may get tricky.
- Alternative - line sweep (yes, this was a geometry problem).

B - Election (15/43)

- Handle sure win/loss separately.
- If there are M remaining votes, and we need at least K votes to win, let $S=\sum_{i=K}^{M}\binom{M}{i}$
- Your candidate wins if $100 * S>W * 2^{M}$
- Use 64-bit integers.
- Floating point arithmetic may work - you avoid excessive multiplication and division.

H - Nice Numbers (3/8)

- Compress the numbers as much as you can.
- Insert 2 next to each remaining 2.
- Compress and repeat with 4's.
- Add 8's at the end until the sum is a power of 2.
- Hard part - keeping track of insertions relative to the original list.
- Lists of size 1 are already done.

J - Stack Construction (0/16)

- There will be exactly N prints, we have to optimize the number of push and pop operations
- For each character, after we print it, we either pop or push another on top (too slow).
- Dynamic programming.

J - Stack Construction (cont.)

- $a_{i, j}$ - the minimum number of push and pop operations to print the substring $S_{i, j}$

$$
a_{i, j}= \begin{cases}0 & \text { if } i>j \\ 2 & \text { if } i=j \\ \min _{i \leq k<j}\left(2+a_{i+1, k-1}+a_{k+1, j}\right) & i<j, s[i]=s[k]\end{cases}
$$

- Solution: $N+a_{0, N-1}$

E - Studying for Exams (6/9)

- At each point of time study a course that gives you the most value (highest derivative)
- Look at the bounds and precision required and make it into a discrete problem
- Discrete version solvable with a standard dynamic programming algorithm.

E - Studying for Exams (cont.)

- Continous version - in the optimal soution, all non-zero functions will reach the same derivative z
- Binary search on z such that used times add up to T
- Do not go back in time! (Take care of $f^{\prime}(t)=z: t<0$)
- General solution - Lagrange multipliers

D - Delivering Goods(0/3)

- Input graph $G(V, E)$
- Calculate all shortest paths from depot and clients
- Build $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ such that V^{\prime} contains the depot and clients and $E^{\prime}=\{(u, v) \in V x V: d(0, u)+d(u, v)=d(0, v)\}$
- G^{\prime} is a DAG, so the answer is the minimum number of paths from 0 that cover all vertices in G^{\prime}
- This is equivalent to the number of disjoint paths in G^{\prime}

D - Delivering Goods (cont.)

- Build a bipartite graph $G^{\prime \prime}\left(V^{\prime \prime}, E^{\prime \prime}\right)$ such that each partition contains a copy of V^{\prime}
- $E^{\prime \prime}=\left\{(u, v) \in E^{\prime}: u \in V_{i n}^{\prime}, v \in V_{\text {out }}^{\prime}\right\}$
- König's theorem: $G^{\prime \prime}$ has a matching of size m if and only if there exists $n-m$ vertex-disjoint paths that cover each vertex in G^{\prime}, where n is the number of vertices in G^{\prime}
- Use maximum flow (bipartite matching)

