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A - FizzBuzz (54/54)

Straightforward - do exactly what you are asked.
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I - Stacking Cups (48/50)

Sorting problem.

Trickiest part - reading input correctly.
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C - Password Hacking (39/48)

Optimally, try passwords in order of descending probability.

Once sorted, result is
∑n

i=1 i ∗ pi
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G - Flow Shop (21/26)

As stated - stage j of swather i cannot start before stage j
of swather i − 1 is completed.

Solution is ansi,j = pi,j + max(ansi,j−1,ansi−1,j)

Easier to implement if we consider (n + 1)X (m + 1) grid
(no boundary checks needed)
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F - Bumper-To-Bumper Traffic (18/32)

Main observation: if x1 < x2, the only way the first car can
catch up is if the second one is not moving.

Simulate. Implementation may get tricky.

Alternative - line sweep (yes, this was a geometry
problem).
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B - Election (15/43)

Handle sure win/loss separately.

If there are M remaining votes, and we need at least K
votes to win, let S =

∑M
i=K

(M
i

)
Your candidate wins if 100 ∗ S > W ∗ 2M

Use 64-bit integers.

Floating point arithmetic may work - you avoid excessive
multiplication and division.
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H - Nice Numbers (3/8)

Compress the numbers as much as you can.

Insert 2 next to each remaining 2.

Compress and repeat with 4’s.

Add 8’s at the end until the sum is a power of 2.

Hard part - keeping track of insertions relative to the
original list.

Lists of size 1 are already done.
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J - Stack Construction (0/16)

There will be exactly N prints, we have to optimize the
number of push and pop operations

For each character, after we print it, we either pop or push
another on top (too slow).

Dynamic programming.
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J - Stack Construction (cont.)

ai,j - the minimum number of push and pop operations to
print the substring Si,j

ai,j =


0 if i > j
2 if i = j
mini≤k<j(2 + ai+1,k−1 + ak+1,j) i < j , s[i] = s[k ]

Solution: N + a0,N−1
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E - Studying for Exams (6/9)

At each point of time study a course that gives you the
most value (highest derivative)

Look at the bounds and precision required and make it into
a discrete problem

Discrete version solvable with a standard dynamic
programming algorithm.
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E - Studying for Exams (cont.)

Continous version - in the optimal soution, all non-zero
functions will reach the same derivative z

Binary search on z such that used times add up to T

Do not go back in time! (Take care of f ′(t) = z : t < 0)

General solution - Lagrange multipliers
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D - Delivering Goods(0/3)

Input graph G(V ,E)

Calculate all shortest paths from depot and clients

Build G′(V ′,E ′) such that V ′ contains the depot and clients
and E ′ = {(u, v) ∈ VxV : d(0,u) + d(u, v) = d(0, v)}

G’ is a DAG, so the answer is the minimum number of
paths from 0 that cover all vertices in G′

This is equivalent to the number of disjoint paths in G′
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D - Delivering Goods (cont.)

Build a bipartite graph G′′(V ′′,E ′′) such that each partition
contains a copy of V ′

E ′′ = {(u, v) ∈ E ′ : u ∈ V ′in, v ∈ V ′out}

König’s theorem: G′′ has a matching of size m if and only if
there exists n −m vertex-disjoint paths that cover each
vertex in G′, where n is the number of vertices in G′

Use maximum flow (bipartite matching)
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